TD N°1: Compacité et théorème d'Ascoli

Ensembles compacts

Exercice 1. Soit (X, d) un espace métrique compact non vide et $f: X \to X$ une application vérifiant :

$$\forall x, y \in X, \ x \neq y, \qquad d(f(x), f(y)) < d(x, y).$$

Montrer que f possède une unique point fixe.

[Indication : on pourra étudier la fonction $x \mapsto d(f(x), x)$.]

Exercice 2. Soit (X,d) est un espace métrique compact non vide. On note

$$diam(X) = \sup_{z,z' \in X} d(z,z').$$

- 1. Montrer que diam(X) est fini et qu'il existe $x, y \in X$ tels que diam(X) = d(x, y).
- 2. Montrer que, si $(F_n)_{n\in\mathbb{N}}$ est une suite décroissante de fermés non vides de X, alors l'ensemble F défini par $F = \bigcap_{n\in\mathbb{N}} F_n$ est un compact non vide de X et diam $(F) = \lim_{n\to+\infty} \operatorname{diam}(F_n)$.
- 3. Si $(F_n)_{n\in\mathbb{N}}$ est suite décroissante de fermés d'un espace complet, $F=\bigcap_{n\in\mathbb{N}}F_n$ est-il nécessairement non vide ?

Exercice 3. Distance de Hausdorff. Soit (X, d) un espace métrique compact et Y l'ensemble des sous-ensembles fermés non vides de X. On définit

$$\delta(A, B) = \max \left(\sup_{x \in A} d(x, B) , \sup_{y \in B} d(y, A) \right) \quad \forall A, B \in Y.$$

- 1. Montrer que δ est une distance sur Y.
- 2. Pour tout $C \in Y$, on note $C^r = \{x \in X : d(x,C) \le r\}$. Montrer que

$$\delta(A, B) = \inf\{r > 0 : A \subset B^r \text{ et } B \subset A^r\}$$
 $\forall A, B \in Y.$

[Indication : on pourra commencer par montrer que $\sup_{x \in A} d(x, B) = \inf\{r > 0 : A \subset B^r\}$.]

- 3. Soit $\varepsilon > 0$ et $x_1, \ldots, x_N \in X$ tels que la famille des boules fermées $(B(x_i, \varepsilon))_{i=1,\ldots,N}$ recouvre X. Montrer que Y muni de la distance δ peut être recouvert par un nombre fini de boules de rayon 2ε dont le centre est un élément de Y de la forme $B(x_{i_1}, \varepsilon) \cup \cdots \cup B(x_{i_k}, \varepsilon)$, où $k \leq N$ et $i_1, \ldots, i_k \in \{1, \ldots, N\}$.
 - [Indication : pour tout $A \in Y$, on pourra considérer $I = \{i \in [1, N] : d(x_i, A) \leq \varepsilon\}$ ainsi que $B = \bigcup_{i \in I} B(x_i, \varepsilon)$.]
- 4. Soit $(K_n)_{n\in\mathbb{N}}$ une suite décroissante de sous-ensembles fermés de X. Montrer qu'elle converge vers $\bigcap_{n\in\mathbb{N}} K_n$ pour la distance δ .
- 5. Montrer que, si $(K_n)_{n\in\mathbb{N}}$ est une suite de Cauchy de Y pour δ , alors $(K_n)_{n\in\mathbb{N}}$ converge (toujours pour δ) vers $\bigcap_{n>0} \overline{\bigcup_{p>n} K_p}$.
- 6. En déduire que Y est compact pour δ .

Exercice 4. Soit $(A_n)_{n\in\mathbb{N}}$ une famille de sous-ensembles d'un espace métrique (X,d). On note

$$A_{\infty} = \left\{ x \in X \mid \exists \text{ une extraction } \varphi \text{ de } \mathbb{N} \text{ dans } \mathbb{N} \text{ et } x_{\varphi(n)} \in A_{\varphi(n)} \text{ avec } x_{\varphi(n)} \to x \right\}.$$

En s'inspirant du procédé diagonal de Cantor, montrer que A_{∞} est fermé.

Théorème d'Ascoli

Exercice 5. Soient E, F des espaces normés et $(f_n)_{n\in\mathbb{N}}$ une suite d'applications équicontinue de E dans F. Montrer que l'ensemble des $x\in E$, pour lesquels $(f_n(x))_{n\in\mathbb{N}}$ est une suite de Cauchy dans F, est un fermé.

Exercice 6. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction uniformément continue et bornée. Pour tout $n \in \mathbb{N}$ on définit $f_n(x) = f(x-n)$. Montrer que la famille $(f_n)_{n \in \mathbb{N}}$ est équicontinue et bornée, mais n'est pas nécessairement relativement compacte pour la norme uniforme sur \mathbb{R} . Qu'en est-il si on considère la restriction à [0,1] des fonctions f_n ?

Exercice 7. Soit E un sous-ensemble borné de $L^1([0,1])$ et $k:[0,1]\times[0,1]\to\mathbb{R}$ une fonction continue. Montrer que l'ensemble de fonctions $F=\left\{x\mapsto\int_0^1k(x,y)u(y)dy,\ u\in E\right\}$ est pré-compact dans $\mathcal{C}([0,1])$.

Exercice 8. Soient (E, d) un espace métrique et \mathcal{H} une famille équicontinue d'applications de E dans \mathbb{R} . Pour $x \in E$, on note :

$$\mathcal{H}(x) = \{ f(x), f \in \mathcal{H} \}.$$

Établir:

- 1. L'ensemble $A = \{x \in E : \mathcal{H}(x) \text{ est borné}\}$ est ouvert et fermé.
- 2. Si E est compact et connexe et si $\mathcal{H}(x_0)$ est borné pour un point quelconque $x_0 \in E$, alors \mathcal{H} est relativement compact dans $\mathcal{C}(E,\mathbb{R})$.

Exercice 9. On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définie par $f_n(t) = \sin(\sqrt{t+4(n\pi)^2})$ sur \mathbb{R}^+ pour tout $n\in\mathbb{N}$.

- 1. Montrer qu'il s'agit d'une suite de fonctions équi continue convergeant simplement vers $f \equiv 0$.
- 2. La suite $(f_n)_{n\in\mathbb{N}}$ est-elle relativement compacte dans $(\mathcal{C}([0,\infty[),\|.\|_{\infty}))$? Que dit le théorème d'Ascoli?

Exercice 10. Théorèmes de Dini.

1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de [0,1] dans \mathbb{R} qui converge simplement en croissant vers une fonction continue $f:[0,1]\to\mathbb{R}$. Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [0,1]. Le résultat persiste-t-il si on ne suppose pas f continue?

[Indication : on pourra considérer les ensembles $\Omega_n = \{x \in [0,1] : f_n(x) > f(x) - \varepsilon\}$ pour tout $n \in \mathbb{N}$.]

2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues croissantes de [0,1] dans \mathbb{R} qui converge simplement vers une fonction continue $f:[0,1]\to\mathbb{R}$. Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [0,1]. Le résultat persiste-t-il si on ne suppose pas f continue?

[Indication : on pourra commencer par remarquer que f est en fait uniformément continue sur [0,1].]

3. Soit $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes définie sur [0,1] par récurrence par :

$$P_0(x) = 0$$
 et $P_{n+1}(x) = P_n(x) + \frac{1}{2}(x - (P_n(x))^2), \forall n \ge 1.$

Vérifier que $0 \le P_n(x) \le P_{n+1}(x) \le \sqrt{x}$ pour tout $x \in [0,1]$ et pour tout $n \in \mathbb{N}$. En déduire que $(P_n)_{n \in \mathbb{N}}$ converge uniformément vers la fonction $x \mapsto \sqrt{x}$ sur [0,1].

Exercice 11. Un compact de $C^{\infty}([0,1])$. On munit l'ensemble $X = C^{\infty}([0,1])$ de la distance

$$d(f,g) = \sum_{n=0}^{+\infty} \frac{\min\{1, \|f^{(n)} - g^{(n)}\|_{\infty}\}}{2^n} \qquad \forall f, g \in X.$$

- 1. Montrer que, pour tout suite $(f_k)_{k\in\mathbb{N}}$ de X et pour tout $f\in X$, on a $d(f_k,f)\to 0$, si et seulement si, pour tout $n\in\mathbb{N},$ $(f_k^{(n)})_{k\in\mathbb{N}}$ converge vers $f^{(n)}$ uniformément sur [0,1].
- 2. Vérifier que d est bien une distance sur X et que X est complet pour d.
- 3. Montrer que, pour tout M > 0, l'ensemble $E_M = \{ f \in X : ||f^{(n)}||_{\infty} \leq M \ \forall n \in \mathbb{N} \}$ est compact pour la distance d.

Exercice 12. Soit E un sous-espace vectoriel fermé de $\mathcal{C}([0,1])$ dont tous les éléments sont de classe \mathcal{C}^1 .

- 1. En utilisant le théorème du graphe fermé, montrer qu'il existe une constante M>0 telle que $||f'||_{\infty} \leq M||f||_{\infty}$ pour tout $f \in E$.
- 2. En déduire que E est de dimension finie.