Corrigé TD nº3.

Exercice 1

1. Soit $\chi \in \mathcal{C}^0_c(\mathbb{R}^n \times \mathbb{R}^n)$ une fonction \mathcal{C}^{∞} à support compact, telle que $\chi(0,0) = 1$. D'après la définition des intégrales oscillantes :

$$\begin{split} \int e^{-iy.x} x_j a(x,y) dx dy &= \lim_{\varepsilon \to 0} \int e^{-iy.x} x_j a(x,y) \chi(\varepsilon x, \varepsilon y) dx dy \\ &= \lim_{\varepsilon \to 0} i \int \partial_{y_j} [e^{-iy.x}] a(x,y) \chi(\varepsilon x, \varepsilon y) dx dy \\ &= \lim_{\varepsilon \to 0} -i \int e^{-iy.x} \partial_{y_j} [a(x,y) \chi(\varepsilon x, \varepsilon y)] dx dy \\ &= -i \lim_{\varepsilon \to 0} \int e^{-iy.x} \partial_{y_j} a(x,y) \chi(\varepsilon x, \varepsilon y) dx dy \\ &- i \lim_{\varepsilon \to 0} \varepsilon \int e^{-iy.x} a(x,y) \partial_{y_j} \chi(\varepsilon x, \varepsilon y) dx dy. \end{split}$$

La première limite vaut $-i \int e^{-iy \cdot x} \partial_{y_j} a(x,y) dx dy$ (par définition de cette intégrale oscillante). Pour le deuxième terme, toujours par la définition des intégrales oscillantes :

$$-i\lim_{\varepsilon\to 0}\int e^{-iy.x}a(x,y)\partial_{y_j}\chi(\varepsilon x,\varepsilon y)dxdy=-i\,\partial_{y_j}\chi(0,0)\int e^{-iy.x}a(x,y)dxdy$$

d'où

$$-i\lim_{\varepsilon\to 0}\varepsilon\int e^{-iy\cdot x}a(x,y)\partial_{y_j}\chi(\varepsilon x,\varepsilon y)dxdy=0.$$

Cela donne le résultat voulu.

2. On se contente de montrer $\frac{1}{(2\pi)^n}\int e^{-iy\cdot x}a(x)dydx=a(0)$. Par symétrie entre les variables y et x, cela suffit.

Lorsque m est suffisamment négatif, a est dans L^1 et \hat{a} est également dans L^1 . On a alors :

$$\frac{1}{(2\pi)^n} \int e^{-iy \cdot x} a(x) dy dx = \frac{1}{(2\pi)^n} \int \hat{a}(y) dy = a(0).$$

Pour conclure, il suffit donc de démontrer que si l'égalité est vraie pour tout $a \in A^m$, alors elle est vraie pour tout $a \in A^{m+1}$. Supposons alors qu'elle est vraie sur pour tout $a \in A^m$ et supposons fixé $a \in A^{m+1}$.

Posons $b(x)=a(x)(1+|x|^2)^{-1}$. On a $b\in A^{m-1}\subset A^m$. En utilisant la question 1. :

$$\int e^{-iy \cdot x} a(x) dy dx = \int e^{-iy \cdot x} b(x) dy dx + \sum_{j} \int e^{-iy \cdot x} x_{j}^{2} b(x) dy dx$$
$$= b(0) - i \sum_{j} \int e^{-iy \cdot x} \partial_{y_{j}} \left[x_{j} b(x) \right] dy dx$$
$$= b(0) = a(0).$$

3. Lorsque $\beta=0$, c'est une conséquence de la question 2., appliquée à $a(y)=y^{\alpha}/(\alpha!)$. Procédons maintenant par récurrence sur $|\beta|$, en utilisant la question 1. On note $\delta_j=(0,...,0,1,0,...,0)$ (avec le 1 en position j). On a :

$$\frac{1}{(2\pi)^n} \int e^{-iy \cdot x} \frac{y^{\alpha} x^{\beta + \delta_j}}{\alpha! (\beta + \delta_j)!} dy dx = \frac{1}{(2\pi)^n} \int e^{-iy \cdot x} x_j \frac{y^{\alpha} x^{\beta}}{\alpha! (\beta + \delta_j)!} dy dx$$

$$= \frac{-i}{(2\pi)^n} \int e^{-iy \cdot x} \partial_{y_j} \left[\frac{y^{\alpha} x^{\beta}}{\alpha! (\beta + \delta_j)!} \right] dy dx$$

$$= \frac{-i}{(2\pi)^n} \int e^{-iy \cdot x} \alpha_j \frac{y^{\alpha - \delta_j} x^{\beta}}{\alpha! (\beta + \delta_j)!} dy dx$$

$$= \mathbb{1}_{\alpha_j > 0} \frac{-i}{(2\pi)^n} \int e^{-iy \cdot x} \frac{y^{\alpha - \delta_j} x^{\beta}}{(\alpha - \delta_j)! (\beta + \delta_j)!} dy dx$$

$$= \mathbb{1}_{\alpha_j > 0} \frac{(-i)^{|\alpha - \delta_j| + 1}}{(\beta + \delta_j)!} \mathbb{1}_{\beta = \alpha - \delta_j}$$

$$= \frac{(-i)^{|\alpha|}}{\alpha!} \mathbb{1}_{\beta + \delta_j = \alpha}.$$

Exercice 2

1. On a $\operatorname{Id} + R = \operatorname{Op}(a)\operatorname{Op}(b) = \operatorname{Op}(ab) + \operatorname{Op}(r)$ avec $r \in S^{-1}$, donc $\operatorname{Op}(ab-1) \in \operatorname{Op}(S^{-1})$, ce qui entraı̂ne $b' = b - 1/a = (ab-1)/a \in S^{-m-1}$, puisque $1/a \in S^{-m}$ (voir question 3. de l'exercice 5 du TD 2).

2. On a:

$$Id + R = Op(a) Op(1/a + b')$$

$$= Op(a) Op(1/a) + Op(a) Op(b')$$

$$= Op\left(1 + \frac{1}{i}\sum_{j}(\partial_{\xi_{j}}a)(\partial_{x_{j}}(1/a)) + ab'\right) + S$$

$$= Op\left(1 - \frac{1}{ia^{2}}\sum_{j}(\partial_{\xi_{j}}a)(\partial_{x_{j}}a) + ab'\right) + S$$

pour un $S \in \operatorname{Op}(S^{-2})$.

3. On a donc:

$$b' = \frac{1}{ia^3} \sum_{j} (\partial_{\xi_j} a)(\partial_{x_j} a) + c, \quad \text{avec} \quad c \in S^{-m-2}.$$

Il suffit alors de poser $b_1 = 1/a$ et $b_2 = \frac{1}{ia^3} \sum_j (\partial_{\xi_j} a)(\partial_{x_j} a)$.

Exercice 3

1. On va montrer que $b:(x,\xi)\to \frac{1-\chi(\xi)}{P(\xi)}u(x)$ appartient à A^{-m} .

Soient α et β des multi-indices.

$$\partial_{\xi}^{\alpha} \partial_{x}^{\beta} b(x,\xi) = \partial_{\xi}^{\alpha} \left(\frac{1 - \chi(\xi)}{P(\xi)} \right) \partial_{x}^{\beta} u(x).$$

Le premier terme du produit est majoré par $C(1+|\xi|)^{-m}$ pour une certaine constante C>0 (à cause de la condition d'ellipticité). Le deuxième est majoré par $C_k(1+|x|)^k$ pour tout k, puisque u est à support compact.

Cela implique en particulier que, pour une certaine constante C':

$$|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} b(x,\xi)| \le C' (1 + |x| + |\xi|)^{-m}.$$

2. Pour tout s et pour toute u à support dans U:

$$\begin{split} T(u) &= \frac{(-1)^s}{(2\pi)^n} \int (-1)^s (x_1^2 + \ldots + x_n^2)^s e^{ix.\xi} \frac{u(x)}{(x_1^2 + \ldots + x_n^2)^s} \frac{1 - \chi(\xi)}{P(\xi)} dx d\xi \\ &= \frac{(-1)^s}{(2\pi)^n} \int (\partial_{\xi_1}^2 + \ldots + \partial_{\xi_n}^2)^s \left[e^{ix.\xi} \frac{u(x)}{(x_1^2 + \ldots + x_n^2)^s} \right] \frac{1 - \chi(\xi)}{P(\xi)} dx d\xi \\ &= \frac{(-1)^s}{(2\pi)^n} \int e^{ix.\xi} \frac{u(x)}{(x_1^2 + \ldots + x_n^2)^s} (\partial_{\xi_1}^2 + \ldots + \partial_{\xi_n}^2)^s \left[\frac{1 - \chi(\xi)}{P(\xi)} \right] dx d\xi. \end{split}$$

La fonction $(1-\chi)P^{-1}$ appartient à S^{-m} donc, pour tout s assez grand, $(\partial_{\xi_1}^2 + ... + \partial_{\xi_n}^2)^s \left[\frac{1-\chi(\xi)}{P(\xi)}\right]$ est intégrable.

On pose alors, pour tout $x \in U$:

$$t(x) = \frac{(-1)^s}{(x_1^2 + \dots + x_n^2)^s} \frac{1}{(2\pi)^n} \int e^{ix.\xi} (\partial_{\xi_1}^2 + \dots + \partial_{\xi_n}^2)^s \left[\frac{1 - \chi(\xi)}{P(\xi)} \right] d\xi.$$

La fonction t est bornée sur U; elle appartient donc à $L^2(U)$. De plus, pour toute $u \in \mathcal{D}(U)$:

$$T(u) = \int u(x)t(x)dx$$

3. On a, pour toute function u:

$$\partial^{\alpha} T(u) = \frac{(-1)^{|\alpha|}}{(2\pi)^n} \int e^{ix.\xi} \frac{1 - \chi(\xi)}{P(\xi)} \partial^{\alpha} u(x) dx d\xi$$
$$= \frac{i^{|\alpha|}}{(2\pi)^n} \int e^{ix.\xi} \xi^{\alpha} \frac{1 - \chi(\xi)}{P(\xi)} u(x) dx d\xi,$$

ce qui s'identifie à une fonction de $L^2(U)$ pour la même raison que précédemment.

Sur tout ouvert borné U ne contenant pas 0, T s'identifie à une fonction L^2 , qui admet des dérivées L^2 à tout ordre; en particulier, T s'identifie donc à une fonction C^{∞} . Sur $\mathbb{R}^n - \{0\}$, T s'identifie donc à une fonction C^{∞} .

4. On a:

$$\begin{split} P(D)Tu &= T(P(-D)u) \\ &= \frac{1}{(2\pi)^n} \int e^{ix.\xi} \frac{1 - \chi(\xi)}{P(\xi)} \left[P(-D)u \right](x) dx d\xi \\ &= \frac{1}{(2\pi)^n} \int P(D_x) \left[e^{ix.\xi} \frac{1 - \chi(\xi)}{P(\xi)} \right] u(x) dx d\xi \\ &= \frac{1}{(2\pi)^n} \int e^{ix.\xi} P(\xi) \frac{1 - \chi(\xi)}{P(\xi)} u(x) dx d\xi \\ &= \frac{1}{(2\pi)^n} \int e^{ix.\xi} u(x) dx d\xi - \frac{1}{(2\pi)^n} \int e^{ix.\xi} \chi(\xi) u(x) dx d\xi \\ &= u(0) - \frac{1}{(2\pi)^n} \int e^{ix.\xi} \chi(\xi) u(x) dx d\xi \end{split}$$

où la dernière égalité provient de l'exercice 1.

La fonction $r: x \mapsto (2\pi)^{-n} \int e^{ix\cdot\xi} \chi(\xi) d\xi$ est \mathcal{C}^{∞} (transformée de Fourier d'une fonction à support compact) et on a $P(D)T = \delta_0 + r$.

5. Soit $\varepsilon > 0$ quelconque. Soit ϕ une fonction à support dans $B(0, \varepsilon)$, qui vaut 1 au voisinage de 0. Posons $T_{\varepsilon} : u \mapsto T(\phi u)$. C'est une distribution à support dans $B(0, \varepsilon)$.

De plus, pour tout j, $\partial_j T_{\varepsilon}(u) = \partial_j T(\phi u) + T((\partial_j \phi)u)$. La distribution $u \mapsto T((\partial_j \phi)u)$ s'identifie à une fonction de $\mathcal{C}^{\infty}(\mathbb{R}^n)$ car $\partial_j \phi$ est nulle au voisinage de 0.

On en déduit qu'il existe une fonction $\tilde{r} \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ telle que, pour toute $u, P(D)T_{\varepsilon}(u) = (P(D)T)(\phi u) + \int \tilde{r}u = u(0) + \int (\tilde{r} + \phi r)u$.

Donc $P(D)T_{\varepsilon} = \delta_0 + (\tilde{r} + \phi r)$.

Exercice 4

1. La fonction u étant bornée, l'hypothèse sur K implique que, pour tout x, la fonction $y \to K(x,y)u(y)$ est dans L^1 , d'intégrale bornée par $A||u||_{\infty}$.

Donc Pu(x) est bien défini et $|Pu(x)| \le A||u||_{\infty}$.

2. a) On utilise, dans la définition de Pu(x), l'inégalité de Cauchy-Schwarz pour les fonctions $f(y) = \sqrt{|K(x,y)|}$ et $g(y) = \sqrt{|K(x,y)|}u(y)$. Cela donne :

$$\begin{aligned} |Pu(x)|^2 &= \left| \int f(y)g(y)dy \right|^2 \\ &\leq \left(\int |f(y)|^2 dy \right) \left(\int |g(y)|^2 dy \right) \\ &= \left(\int |K(x,y)|dy \right) \left(\int |K(x,y)| |u(y)|^2 dy \right) \\ &\leq A \int |K(x,y)| |u(y)|^2 dy \end{aligned}$$

b) En intégrant sur x l'inégalité précédente, on trouve :

$$||Pu||_2^2 \le A \int |K(x,y)| \, |u(y)|^2 dy dx \le A^2 \int |u(y)|^2 dy = A^2 ||u||_2^2$$

L'application P est donc uniformément continue, de norme au plus A, de $\mathcal{C}_c^0(\mathbb{R}^n)$ vers L^2 . Par densité, elle admet donc une unique extension continue de L^2 vers L^2 , dont la norme est toujours au plus A.

Exercice 5

1. a)

$$\begin{aligned} \operatorname{Op}(a)u(x) &= \frac{1}{(2\pi)^n} \int a(x,\xi) e^{ix.\xi} \hat{u}(\xi) d\xi \\ &= \frac{1}{(2\pi)^n} \int a(x,\xi) e^{ix.\xi} \left(\int e^{-iy.\xi} u(y) dy \right) d\xi \\ &= \frac{1}{(2\pi)^n} \int a(x,\xi) e^{i(x-y).\xi} u(y) dy d\xi \end{aligned}$$

ce qui est bien de la forme voulue, pour $K(x,y) = \frac{1}{(2\pi)^n} \int a(x,\xi) e^{i(x-y)\cdot\xi} d\xi$.

Come $|a(x,\xi)|$ est majorée par $C(1+||\xi||)^{-(n+1)}$, ce qui est une fonction intégrable, et comme u est de Schwartz, il n'y a pas de problème de convergence.

b) Puisque $a \in S^{-(n+1)}$:

$$|K(x,y)| \le \frac{1}{(2\pi)^n} \int |a(x,\xi)| d\xi$$
$$\le C \int (1+|\xi|)^{-(n+1)} d\xi$$
$$< +\infty$$

Donc K est bornée.

Pour tout $j \leq n$, d'après les propriétés classiques de la transformée de Fourier :

$$(x_j - y_j)^{n+1} K(x, y) = i^{n+1} \frac{1}{(2\pi)^n} \int \partial_{\xi_j}^{n+1} a(x, \xi) e^{i(x-y).\xi} d\xi$$

Donc:

$$|x_{j} - y_{j}|^{n+1} |K(x, y)| \leq \frac{1}{(2\pi)^{n}} \int |\partial_{\xi_{j}}^{n+1} a(x, \xi)| d\xi$$

$$\leq C \int (1 + |\xi|)^{-2(n+1)} d\xi$$

$$< +\infty$$

Donc $(x,y) \to |x_j-y_j|^{n+1}K(x,y)$ est bornée. Cela entraı̂ne que la fonction $(x,y) \to ||x-y||_{n+1}^{n+1}K(x,y)$ est bornée. Par équivalence des normes, $(x,y) \to ||x-y||_2^{n+1}K(x,y)$ est bornée. Comme on a vu que K était également bornée, $(x,y) \to (1+||x-y||^{n+1})K(x,y)$ est une fonction bornée. c) D'après la question b), |K| est majorée par $C(1+||x-y||^{n+1})^{-1}$ pour une certaine constante C>0.

Donc:

$$\sup_{x} \int |K(x,y)| dy \le C \int \frac{1}{1+||t||^{n+1}} dt \qquad \sup_{y} \int |K(x,y)| dy \le C \int \frac{1}{1+||t||^{n+1}} dt$$

D'après le lemme de Schur vu à l'exercice 1, Op(a) s'étend de manière unique en un opérateur borné de L^2 vers L^2 .

2. Pour k = 0, c'est la question 1.

On suppose maintenant que c'est démontré pour $k-1 \ge 0$ et on le démontre pour $k \le n$. On suppose donc $a \in S^{k-(n+1)}$.

D'après les résultats de calcul symbolique vus en cours, $\operatorname{Op}(a)^*$ est un opérateur pseudo-différentiel d'ordre k-(n+1). De plus, $\operatorname{Op}(a)^*\operatorname{Op}(a)$ est la composition de deux opérateurs pseudo-différentiels d'ordre k-(n+1). C'est donc un opérateur pseudo-différentiel d'ordre $2(k-(n+1)) \leq (k-1)-(n+1)$. D'après l'hypothèse de récurrence, $\operatorname{Op}(a)^*\operatorname{Op}(a)$ est continu de L^2 vers L^2 . D'après l'indication, $\operatorname{Op}(a)$ aussi.

3. a) Soit $M > 2 \sup_{x,\xi \in \mathbb{R}^n} |a(x,\xi)|^2$.

On pose $c(x,\xi) = \sqrt{M - |a(x,\xi)|^2}$. Vérifions qu'il s'agit d'un symbole d'ordre 0. Pour tous multiindices $\alpha, \beta, \partial_x^{\alpha} \partial_{\varepsilon}^{\beta} c$ est une somme de fonctions de la forme :

(1)
$$\frac{\prod_{j=1}^{s} (\partial_x^{\alpha_j} \partial_{\xi}^{\beta_j} a) \prod_{j=1}^{s'} (\overline{\partial_x^{\alpha'_j} \partial_{\xi}^{\beta'_j} a)}}{(M - |a|^2)^r}$$

avec $r \in \mathbb{R}$, $\alpha_1 + \ldots + \alpha_s + \alpha_1' + \ldots + \alpha_{s'}' = \alpha$ et $\beta_1 + \ldots + \beta_s + \beta_1' + \ldots + \beta_{s'}' = \beta$.

La fonction $M - |a|^2$ est à valeurs dans [M/2; M]. Elle est donc majorée et minorée. Le fait que a appartienne à S^0 implique donc qu'un terme de la forme (1) est majoré par :

$$C(1+||\xi||)^{-|\beta_1|-...-|\beta'_{s'}|} = C(1+||\xi||)^{-|\beta|}$$

ce qui montre $c \in S^0$.

D'après les résultats du cours sur le calcul symbolique, $\operatorname{Op}(c)^* \operatorname{Op}(c) = \operatorname{Op}(\overline{c}) \operatorname{Op}(c) + R_1 = \operatorname{Op}(|c|^2) + R_2 + R_1$ avec $R_1, R_2 \in \operatorname{Op}(S^{-1})$.

De plus, $Op(a)^* Op(a) = Op(|a|^2) + R_3$ avec $R_3 \in Op(S^{-1})$.

Cela entraı̂ne :

$$\operatorname{Op}(c)^* \operatorname{Op}(c) = \operatorname{Op}(M - |a|^2) + R_2 + R_1$$

= $M \operatorname{Id} - \operatorname{Op}(|a|^2) + R_2 + R_1$
= $M \operatorname{Id} - \operatorname{Op}(a)^* \operatorname{Op}(a) + R_3 + R_2 + R_1$

et on a bien $R_3 + R_2 + R_1 \in \text{Op}(S^{-1})$.

b) D'après la question 2. appliquée à $k=n,\,R$ est continu de L^2 vers L^2 . Pour toute fonction u, on a donc :

$$||\operatorname{Op}(a)u||_{2}^{2} = \langle \operatorname{Op}(a)u, \operatorname{Op}(a)u \rangle$$

$$= \langle u, \operatorname{Op}(a)^{*} \operatorname{Op}(a)u \rangle$$

$$= \langle u, Mu - \operatorname{Op}(c)^{*} \operatorname{Op}(c)u + Ru \rangle$$

$$= M||u||^{2} - ||\operatorname{Op}(c)u||^{2} + \langle u, Ru \rangle$$

$$\leq M||u||^{2} + \langle u, Ru \rangle$$

$$\leq (M + ||R||_{L^{2} \to L^{2}})||u||^{2}$$

donc Op(a) est continu sur L^2 .

Exercice 6

1. Le noyau est donné par $K(x,y) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}} a(x,\xi) e^{i(x-y)\cdot\xi} d\xi$.

En intégrant par parties, on peut donner un sens à cette intégrale pour tout (x,y) tel que $x \neq y$.

2. Pour tous multi-indices α et β , la fonction $(x, y, \xi) \mapsto a(x, \xi)e^{i(x-y)\cdot\xi}$ est (α, β) -fois dérivable par rapport à (x, y). De plus, la dérivée (α, β) -ème est une combinaison linéaire de termes de la forme :

$$\partial_x^{\gamma} a(x,\xi) \xi^{(\alpha-\gamma)+\beta} e^{i(x-y).\xi}$$

avec $\gamma \leq \alpha$.

Puisque $a \in S^{-\infty}$, une telle combinaison linéaire est majorée par $C(1+||\xi||)^{-(n+1)}$ pour une certaine constante C, ce qui est une fonction intégrable en ξ .

On peut donc dériver sous le signe somme et K est \mathcal{C}^{∞} .

3. D'après le deuxième théorème, $\operatorname{Op}(a)M_{\psi} = \operatorname{Op}(a)\operatorname{Op}(\psi)$ est de la forme $\operatorname{Op}(c)$ avec :

$$c \sim \sum_{\alpha} (\partial_{\xi}^{\alpha} a)(\partial^{\alpha} \psi)$$

Chaque terme de ce développement asymptotique est à support dans $\operatorname{Supp}(\psi) \times \mathbb{R}^n$. On en déduit qu'il existe $b \in S^m$ et $R \in \operatorname{Op}(S^{-\infty})$ tels que $b(x,\xi) = 0$ pour tout (x,ξ) tel que $x \notin \operatorname{Supp}(\psi)$ et :

$$Op(a)M_{\psi} = Op(b) + R$$

On a de même $M_{\phi} \operatorname{Op}(b) = \operatorname{Op}(c)$ avec :

$$c \sim \sum_{\alpha} \frac{1}{i^{|\alpha|} \alpha!} (\partial_{\xi}^{\alpha} \phi) (\partial_{x}^{\alpha} b)$$

Pour tout α , $(\partial_{\xi}^{\alpha}\phi)(\partial_{x}^{\alpha}b) = 0$, puisque, pour tout ξ , Supp $(\partial_{x}^{\alpha}b(.,\xi)) \subset \text{Supp}(\psi)$ et Supp $(\partial_{\xi}^{\alpha}\phi(.,\xi)) \subset \text{Supp}(\psi)$ et les deux supports sont donc disjoints.

Cela entraı̂ne $c \in S^{-\infty}$. Donc $M_{\phi} \operatorname{Op}(b) \in \operatorname{Op}(S^{-\infty})$ et $M_{\phi} \operatorname{Op}(a) M_{\psi} = M_{\phi} \operatorname{Op}(b) + M_{\phi} R \in \operatorname{Op}(S^{-\infty})$.

4. On note $K(x,y) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}} a(x,\xi) e^{i(x-y)\cdot\xi} d\xi$ le noyau de $\operatorname{Op}(a)$ et K' le noyau de $M_{\phi} \operatorname{Op}(a) M_{\psi}$. Intuitivement, pour une fonction $u \in \mathcal{S}(\mathbb{R}^n)$:

$$\int_{\mathbb{R}^n} K'(x,y)u(y)dy = M_{\phi} \operatorname{Op}(a)M_{\psi}u(x)$$

$$= \phi(x) \operatorname{Op}(a)(\psi u)(x)$$

$$= \phi(x) \int_{\mathbb{R}^n} K(x,y)\psi(y)u(y)dy$$

$$= \int_{\mathbb{R}^n} (\phi(x)K(x,y)\psi(y)) u(y)dy$$

donc on s'attend à avoir $K'(x,y) = \phi(x)K(x,y)\psi(y)$. Justifions maintenant rigoureusement ce résultat.

On note $b \in S^m$ le symbole tel que $\operatorname{Op}(a)M_{\psi} = \operatorname{Op}(b)$. En utilisant le fait que, pour toutes fonctions $f_1, f_2, \widehat{f_1f_2} = (2\pi)^{-n}\widehat{f_1} \star \widehat{f_2}$, on a, si u est de Schwartz :

$$\frac{1}{(2\pi)^n} \int b(x,\xi) e^{ix.\xi} \hat{u}(\xi) d\xi = \operatorname{Op}(a) M_{\psi} u(x)$$

$$= \frac{1}{(2\pi)^n} \int a(x,\xi') e^{ix.\xi'} \widehat{\psi} u(\xi') d\xi'$$

$$= \frac{1}{(2\pi)^{2n}} \int a(x,\xi') e^{ix.(\xi'-\xi)} e^{ix.\xi} \hat{\psi}(\xi'-\xi) \hat{u}(\xi) d\xi' d\xi$$

ce qui fait qu'on a :

$$b(x,\xi) = \frac{1}{(2\pi)^n} a(x,.) \star (e^{-ix} \hat{\psi}(-.))(\xi)$$

En notant K'' le symbole de b, on a $K''(x,y) = \mathcal{F}^{-1}(b(x,.))(x-y)$ donc :

$$K''(x,y) = \mathcal{F}^{-1}(a(x,.))(x-y)\mathcal{F}^{-1}(e^{-ix.}\hat{\psi}(-.))(x-y)$$

= $K(x,y)\psi(y)$

Un raisonnement similaire (mais nettement plus simple) montre qu'on a aussi $K'(x,y) = \phi(x)K''(x,y)$, ce qui démontre bien :

$$K'(x,y) = \phi(x)K(x,y)\psi(y)$$

5. D'après la question 3., K' est le noyau d'un opérateur pseudo-différentiel d'ordre $-\infty$. D'après la question 2., c'est une fonction \mathcal{C}^{∞} . Puisque K est égal à K' au voisinage de (x,y), K est \mathcal{C}^{∞} au voisinage de (x,y).

Exercice 7

1. a) Soit $u \in \mathcal{C}_c^{\infty}(\Omega)$. Comme c'est une fonction de la classe de Schwartz, $\phi \operatorname{Op}_{\Omega}(a)u = \operatorname{Op}(\phi a)u$ est une fonction de la classe de Schwartz pour toute $\phi \in \mathcal{C}_c^{\infty}(\Omega)$. Donc $\operatorname{Op}_{\Omega}(a)u$ est \mathcal{C}^{∞} sur Ω .

b) On a :
$$\operatorname{Op}(\phi \tilde{\phi} a)^* v = (M_{\phi} \operatorname{Op}(\tilde{\phi} a))^* v = (\operatorname{Op}(\tilde{\phi} a))^* M_{\phi}^* v = (\operatorname{Op}(\tilde{\phi} a))^* (\overline{\phi} v) = (\operatorname{Op}(\tilde{\phi} a))^* v.$$

Et de même $(\operatorname{Op}(\phi\tilde{\phi}a))^*v = (M_{\tilde{\phi}}\operatorname{Op}(\phi a))^*v = (\operatorname{Op}(\phi a))^*v$. Cela entraı̂ne l'égalité demandée.

c) Soit $u \in \mathcal{S}'(\Omega)$. On définit $\operatorname{Op}_{\Omega}(a)u \in \mathcal{D}'(\Omega)$ par :

$$\forall v \in \mathcal{C}_c^{\infty}(\Omega), \qquad \langle \operatorname{Op}_{\Omega}(a)u, v \rangle = \langle u, (\operatorname{Op}(\phi a))^*v \rangle$$

où ϕ est une fonction de $\mathcal{C}_c^{\infty}(\Omega)$ valant 1 sur le support de v.

Cette définition ne dépend pas du choix de ϕ , d'après la question précédente. Les propriétés de continuité de $(\operatorname{Op}(\phi a))^*$ font que cela définit bien une distribution.

De plus, on vérifie que cette définition coïncide avec la précédente pour $u \in \mathcal{C}_c^{\infty}(\Omega)$.

2. a) Soit $u \in \mathcal{C}_c^{\infty}(\Omega)$.

Soit K l'ensemble (fini) des indices k tels que $\operatorname{Supp}(u) \cap \operatorname{Supp}(\psi_k) \neq \emptyset$. On a $u = \sum_{k \in K} \psi_k u$ donc $Au = \sum_{k \in K} AM_{\psi_k} u$.

Soit $x \in \Omega$ fixé. Soit J l'ensemble (fini) des indices j tels que $x \in \text{Supp}(\psi_i)$. Alors :

$$Au(x) = \sum_{j \in J} \psi_j(x) Au(x)$$

$$= \sum_{j \in J, k \in K} (M_{\psi_j} A M_{\psi_k}) u(x)$$

$$= \sum_{j \in J, k \in K} A_{jk} u(x).$$

Si $j \notin J$ ou $k \notin K$, $A_{jk}u(x) = 0$, donc :

$$Au(x) = \sum_{j,k \in \mathbb{N}} A_{jk} u(x).$$

b) Par hypothèse, pour tous j, k, il existe un symbole $a_{jk} \in S^m$ tel que $A_{jk} = \operatorname{Op}(a_{jk})$. Pour tout $x \notin \operatorname{Supp}(\psi_j)$, $a_{jk}(x, .) = 0$ (puisque $A_{jk}u(x) = 0$ pour toute $u \in \mathcal{S}(\mathbb{R}^n)$).

Si on pose $a = \sum_{(j,k) \in I} a_{jk}$, l'opérateur a est bien défini puisqu'en chaque point, la somme est finie. De plus, pour toute $\phi \in \mathcal{C}^{\infty}_{c}(\Omega)$, $\phi a_{jk} = 0$ pour tout $(j,k) \in I$ sauf un nombre fini. Donc ϕa est une somme finie de symboles d'ordre m, ce qui entraı̂ne que ϕa est un symbole d'ordre m. Donc $a \in S^{m}_{loc}(\Omega)$.

Il faut maintenant vérifier qu'avec cette définition, on a bien $\sum_{(j,k)\in I} A_{jk} = \operatorname{Op}_{\Omega}(a)$. Pour toute $u \in \mathcal{S}(\mathbb{R}^n)$ et pour toute $\phi \in \mathcal{C}_c^{\infty}(\Omega)$:

$$\phi \sum_{(j,k)\in I} A_{jk} u = \sum_{\substack{(j,k)\in I\\ \operatorname{Supp}(\psi_j)\cap\operatorname{Supp}(\phi)\neq\emptyset}} \phi A_{jk} u$$

$$= \sum_{\substack{(j,k)\in I\\ \operatorname{Supp}(\psi_j)\cap\operatorname{Supp}(\phi)\neq\emptyset}} \phi \operatorname{Op}(a_{jk}) u$$

$$= \operatorname{Op}\left(\phi \sum_{\substack{(j,k)\in I\\ \operatorname{Supp}(\psi_j)\cap\operatorname{Supp}(\phi)\neq\emptyset}} a_{jk}\right) u$$

$$= \operatorname{Op}(\phi a) u$$

$$= \phi \operatorname{Op}_{\Omega}(a) u.$$

Comme c'est vrai pour toute fonction ϕ , $\sum_{(j,k)\in I} A_{jk}u = \operatorname{Op}_{\Omega}(a)u$.

c) De même qu'à la question 3. de l'exercice 6., $M_{\psi_j}AM_{\psi_k} \in \operatorname{Op}(S^{-\infty})$ si $\operatorname{Supp}(\psi_j) \cap \operatorname{Supp}(\psi_k) = \emptyset$. D'après la question 2. de l'exercice 6., c'est donc un opérateur à noyau \mathcal{C}^{∞} .

Notons K le noyau et montrons qu'il est à support inclus dans $\operatorname{Supp}(\psi_j) \times \operatorname{Supp}(\psi_k)$.

Pour tout $x \notin \text{Supp}(\psi_j)$, pour toute $u \in \mathcal{S}(\mathbb{R}^n)$, $A_{jk}u(x) = 0$ donc:

$$\int_{\mathbb{R}^n} K(x,y)u(y)dy = 0.$$

C'est équivalent à K(x,y)=0 pour tout $y\in\mathbb{R}^n$. Donc $\mathrm{Supp}(K)\subset\mathrm{Supp}(\psi_i)\times\mathbb{R}^n$.

Montrons maintenant que K(x,y) = 0 pour tous x,y tels que $y \notin \operatorname{Supp}(\psi_k)$.

Supposons par l'absurde que ce n'est pas le cas : $K(x,y) \neq 0$ pour un certain $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$ tel que $y \notin \text{Supp}(\psi_k)$. Alors il existe une fonction u, de classe \mathcal{C}^{∞} , à support inclus dans un voisinage arbitrairement petit de y, telle que :

$$\int_{\mathbb{R}^n} K(x,y)u(y)dy \neq 0.$$

On a alors $A_{jk}u(x) \neq 0$. Mais, si le support de u est assez petit, $\operatorname{Supp} u \cap \operatorname{Supp}(\psi_k) = \emptyset$ et $A_{jk}u = \emptyset$ $M_{\psi_i}A(\psi_k u) = M_{\psi_i}A(0) = 0$. C'est absurde.

d) Pour tout $(j,k) \notin I$, notons K_{jk} le noyau de A_{jk} . Comme $\operatorname{Supp}(K_{jk}) \subset \operatorname{Supp}(\psi_j) \times \operatorname{Supp}(\psi_k)$, la somme $K = \sum_{(j,k) \notin I} K_{jk}$ est bien définie (chaque point admet un voisinage sur lequel seul un nombre fini de termes sont non-nuls); elle est \mathcal{C}^{∞} .

On vérifie également que, pour toute fonction $u \in \mathcal{C}_c^{\infty}(\Omega)$, $\left(\sum_{(j,k)\notin I} A_{jk}\right) u = \int_{\mathbb{R}^n} K(.,y)u(y)dy$. Cela implique que $\sum_{(j,k)\notin I} A_{jk}$ est un opérateur à noyau \mathcal{C}^{∞} . En posant $R = \sum_{(j,k)\notin I} A_{jk}$ et en définissant a comme à la question b), on a bien, d'après la question a):

$$A = \sum_{(j,k)\in I} A_{jk} + \sum_{(j,k)\notin I} A_{jk} = \operatorname{Op}_{\Omega}(a) + R.$$