TD N°5. ANALYSE MICROLOCALE

Exercice 1 : propriétés du front d'onde

On rappelle que les éléments de $\mathcal{E}'(\mathbb{R}^n)$ se prolongent à $\mathcal{S}(\mathbb{R}^n)$ en des distributions tempérées et que pour toute $u \in \mathcal{E}'(\mathbb{R}^n)$, $\mathcal{F}u$ est une fonction \mathcal{C}^{∞} à croissance au plus polynomiale. On suppose $u \in \mathcal{E}'(\mathbb{R}^n)$ fixée pour la suite de l'exercice.

- 1. Soit ξ tel que \hat{u} est à décroissance rapide sur un voisinage conique C_1 de ξ (on dit alors que $\xi \notin \Sigma(u)$).
- a) Montrer qu'il existe un voisinage conique C_2 de ξ et une constante c telle que, pour tout $\eta \in C_2$, on ait $|\eta \zeta| \le c|\eta| \Rightarrow \zeta \in C_1$.
- b) Soit $\phi \in \mathcal{S}(\mathbb{R}^n)$. Montrer que $\widehat{\phi u}$ est à décroissance rapide sur C_2 .
- c) En déduire que, pour toute $\phi \in \mathcal{S}(\mathbb{R}^n)$, $\Sigma(\phi u) \subset \Sigma(u)$.
- 2. a) Montrer que, pour toute $v \in \mathcal{D}'(\mathbb{R}^n)$, pour toute $\phi \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})$, on a $WF(\phi v) \subset WF(v)$.
- b) Soient $\phi_1, \phi_2 \in \mathcal{C}_c^{\infty}(\mathbb{R}^n)$ telles que $\phi_2 \neq 0$ sur le support de ϕ_1 . Montrer que $\Sigma(\phi_1 u) \subset \Sigma(\phi_2 u)$.
- c) On définit $\Sigma_x(u)$ comme l'intersection des $\Sigma(\phi u)$, pour $\phi \in \mathcal{C}_c^{\infty}$ telles que $\phi(x) = 1$. Dire pourquoi :

$$\Sigma_x(u) = \{ \xi \text{ tq } (x, \xi) \in WF(u) \}.$$

- d) Soit Γ un voisinage conique de $\Sigma_x(u)$. Montrer qu'il existe un nombre fini de $\phi_j \in \mathcal{C}_c^{\infty}(\mathbb{R}^n, \mathbb{R})$ avec $\phi_j(x) \neq 0$ telles que $\cap_j \Sigma(\phi_j u) \subset \Gamma$.
- e) En déduire qu'il existe un voisinage U de x tel que, pour toute fonction $\phi \in \mathcal{C}_c^{\infty}(U,\mathbb{R})$, on ait $\Sigma(\phi u) \subset \Gamma$.

Exercice 2 : une autre caractérisation du front d'onde

Soient $s \in \mathbb{R}$ et $f \in H^s(\mathbb{R}^n)$. On va montrer l'équivalence entre les deux propriétés suivantes :

- 1. $(x_0, \xi_0) \notin WF(f)$.
- 2. Il existe un voisinage conique Γ de (x_0, ξ_0) tel que, pour tout $a \in S^{+\infty}$ tel que $\mathrm{Supp}(a) \subset \Gamma$, $\mathrm{Op}(a) f \in H^{\infty}$.
- 1. Montrer $(2) \Rightarrow (1)$.
- 2. Réciproquement, soit $(x_0, \xi_0) \notin WF(f)$.
- a) Montrer qu'il existe $a \in S^0$ vérifiant les deux propriétés suivantes :
 - $\operatorname{Op}(a) f \in H^{\infty}$.
 - Il existe un voisinage conique Γ de (x_0, ξ_0) et R > 0 tels que :

$$\forall (x,\xi) \in \Gamma \text{ tq } |\xi| \ge R, \qquad |a(x,\xi)| \ge 1.$$

b) Soient a, Γ comme précédemment. Soit Γ' un voisinage conique ouvert de (x_0, ξ_0) tel que $\overline{\Gamma}' \subset \mathring{\Gamma}$. Soit $b \in S^{+\infty}$ tel que Supp $(b) \subset \Gamma'$. Montrer qu'il existe $c \in S^{+\infty}$ tel que :

$$\operatorname{Op}(b) - \operatorname{Op}(c)\operatorname{Op}(a) \in \operatorname{Op}(S^{-\infty}).$$

c) Conclure.

Exercice 3 : propagation des singularités pour l'équation des ondes

1. Résoudre l'équation des ondes sur \mathbb{R}^n :

(1)
$$\begin{cases} \partial_t^2 u - \Delta u = 0\\ (u, \partial_t u)|_{t=0} = (0, f) \end{cases}$$

où $f \in L^2(\mathbb{R}^n)$ est à support compact et $u \in \mathcal{C}^2(\mathbb{R}, H^2(\mathbb{R}^n))$. Montrer que si $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$, alors $u \in \mathcal{C}^{\infty}(\mathbb{R} \times \mathbb{R}^n)$.

On définit le support singulier par : $x \notin \text{singsupp}(u)$ s'il existe un voisinage de x sur lequel u est C^{∞} et on définit $\Sigma(f)$ comme à l'exercice 1.

2. On considère une solution u de (1). Soit $\chi \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ telle que $\chi(\xi) = 1$ pour $|\xi| \ge 1$ et $\chi = 0$ au voisinage de 0. Vérifier que :

$$u(t,x) = \frac{1}{(2\pi)^n} \frac{1}{2i} (u_+ - u_-) + \frac{1}{(2\pi)^n} \int (1 - \chi(\xi)) \frac{\sin(t|\xi|)}{|\xi|} e^{ix.\xi} \hat{f}(\xi) d\xi$$

où on a noté:

$$u_{\pm}(t,x) = \int \frac{\chi(\xi)}{|\xi|} e^{i(x.\xi \pm t|\xi|)} \hat{f}(\xi) d\xi.$$

- 3. Montrer que $WF(u(t)) \subset WF(u_+(t)) \cup WF(u_-(t))$.
- 4. On suppose fixé $t \in \mathbb{R}$ et $x_0 \notin \operatorname{Supp}(f) t\Sigma_1(f)$, où $\Sigma_1(f) = \Sigma(f) \cap \{|\xi| = 1\}$. Soit U un voisinage de x_0 et Γ un voisinage conique de $\Sigma(f)$ tels que :

$$U \cap (\operatorname{Supp}(f) - t\Gamma_1) = \emptyset$$

où on a noté $\Gamma_1 = \Gamma \cap \{|\xi| = 1\}$. On introduit ψ homogène de degré 0 telle que $\psi = 1$ sur un voisinage conique de $\Sigma(f)$ et $\psi(\xi) = 0$ pour $\xi \notin \Gamma$. On écrit $u_+ = u_+^1 + u_+^2$ où :

$$\begin{split} u^1_+(t,x) &= \int \frac{\psi(\xi)\chi(\xi)}{|\xi|} e^{i(x.\xi+t|\xi|)} \hat{f}(\xi) d\xi, \\ u^2_+(t,x) &= \int \frac{(1-\psi(\xi))\chi(\xi)}{|\xi|} e^{i(x.\xi+t|\xi|)} \hat{f}(\xi) d\xi. \end{split}$$

Montrer que $\operatorname{singsupp}(u_+) = \operatorname{singsupp}(u_+^1)$.

5. En utilisant la relation

$$\sum_{j=1}^{n} \frac{x_j - y_j + t \frac{\xi_j}{|\xi|}}{i \left| x - y + t \frac{\xi}{|\xi|} \right|^2} \partial_j e^{i((x-y).\xi + t|\xi|)} = e^{i((x-y).\xi + t|\xi|)},$$

montrer que $u_+^1 \in \mathcal{C}^{\infty}(U)$. En déduire $x_0 \notin \operatorname{singsupp}(u_+(t))$.

6. En déduire le « théorème de propagation des singularités » suivant :

singsupp
$$(u(t)) \subset \bigcup_{(x,\xi) \in WF(f)} \left(x \pm t \frac{\xi}{|\xi|} \right)$$
.