TD N°1 : ÉQUATIONS DE TRANSPORT ET DISTRIBUTIONS HARMONIQUES

Dans tout le TD, n désigne un entier naturel non nul.

Exercice 1 : équation de transport linéaire avec donnée initiale non régulière

On s'intéresse à un problème de transport de type :

(1)
$$\begin{cases} \partial_t u(t,x) + c \cdot \nabla_x u(t,x) = 0 & \text{sur } \mathbb{R}_*^+ \times \mathbb{R}^n \\ u(0,\cdot) = u_0 \end{cases}$$

où c est un vecteur de \mathbb{R}^n constant.

Lorsque $u_0 \in \mathcal{C}^1(\mathbb{R}^n)$, la solution (au sens classique) de ce problème de transport est donnée par $u(t,x) = u_0(x-ct)$. Comment donner un sens au fait que u soit solution de ce problème lorsque u_0 n'est pas régulière, voire discontinue? Dans la suite, on supposera donc u_0 seulement bornée localement sur \mathbb{R}^n .

1. On dira qu'une fonction u bornée localement sur $\mathbb{R}^+_* \times \mathbb{R}^n$ est une solution faible du problème (1) si pour tout $\varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}^+ \times \mathbb{R}^n)$, on a :

$$\int_{\mathbb{R}^+ \times \mathbb{R}^n} u(t,x) \left[\partial_t \varphi(t,x) + c \cdot \nabla_x \varphi(t,x) \right] \, dx \, dt + \int_{\mathbb{R}^n} u_0(x) \varphi(0,x) \, dx = 0.$$

Montrer qu'une solution classique (lorsque $u_0 \in \mathcal{C}^1(\mathbb{R}^n)$) est une solution faible.

2. Montrer l'unicité (au sens presque partout) d'une solution faible.

[Indication : on s'intéressera à la solution $\varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}^+ \times \mathbb{R}^n)$ du problème de transport suivant :

$$\begin{cases} \partial_t \varphi(t, x) + c \cdot \nabla_x \varphi(t, x) = \psi(t, x) & \text{sur } \mathbb{R}^n \times \mathbb{R}^+_* \\ \varphi(\cdot, 0) = \varphi_0, \end{cases}$$

où $\psi \in \mathcal{C}_c^{\infty}(\mathbb{R}^+ \times \mathbb{R}^n)$ quelconque et φ_0 choisi convenablement.]

3. Dans le cas où n = 1, c > 0 et $u_0(x) = H(x)$ la fonction d'Heaviside, donner explicitement l'unique solution faible du problème.

Exercice 2 : une équation de transport non linéaire

Dans cet exercice, on considère une équation de transport en dimension 1 :

(2)
$$\begin{cases} \partial_t u(t,x) + \frac{1}{2}\partial_x (u^2)(t,x) = 0 & \text{sur } \mathbb{R}_*^+ \times \mathbb{R} \\ u(0,\cdot) = u_0. \end{cases}$$

1. Dans cette question, on suppose que $u_0 \in \mathcal{C}^1(\mathbb{R})$, que u_0 est bornée ainsi que sa dérivée u_0' . Le but de cette question est de montrer que (2) admet une solution de classe \mathcal{C}^1 sur $[0, T] \times \mathbb{R}$ où

$$T = \frac{1}{\sup_{z \in \mathbb{R}} (\max(0, -u_0'(z))}$$

avec la convention $1/0 = +\infty$.

a) Pour $s \geq 0$, on définit ϕ_s par

$$\phi_s(z) = z + su_0(z), \quad \forall z \in \mathbb{R}.$$

Montrer que pour tout $s \in [0, T[, \phi_s \text{ est bijective de classe } \mathcal{C}^1 \text{ ainsi que sa réciproque.}$

b) Montrer que l'application Φ définie par

$$\Phi(t,x) = \phi_t^{-1}(x), \quad \forall (t,x) \in [0,T] \times \mathbb{R}$$

est de classe C^1 sur $[0, T] \times \mathbb{R}$.

[Indication : on pourra introduire la fonction F définie par $F(t, x, z) = z + tu_0(z) - x$.]

c) Conclure.

[Remarque : cette solution est en fait unique et cela se montre grâce à la méthode des caractéristiques qui sera vue ultérieurement.]

2. De même qu'à l'exercice 1, on définit la notion de solution faible : on dira que u bornée localement sur $\mathbb{R}^+ \times \mathbb{R}$ est une solution faible du problème (2) si pour tout $\varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}^+ \times \mathbb{R})$, on a :

$$\int_{\mathbb{R}^+ \times \mathbb{R}} \left[u(t, x) \partial_t \varphi(t, x) + \frac{1}{2} u^2(t, x) \partial_x \varphi(t, x) \right] dx dt + \int_{\mathbb{R}} u_0(x) \varphi(0, x) dx = 0.$$

On suppose maintenant que $u_0 = 0$ et on définit pour p > 0,

$$\forall (t,x) \in \mathbb{R}_*^+ \times \mathbb{R}, \quad v_p(t,x) = \begin{cases} 0 & \text{si } x \le -pt, \\ -2p & \text{si } -pt < x \le 0, \\ 2p & \text{si } 0 < x \le pt \\ 0 & \text{si } x > pt. \end{cases}$$

Vérifier que pour tout p > 0, v_p est une solution faible de l'équation (2).

Exercice 3 : inégalité de Caccioppoli et régularité des fonctions harmoniques Soit Ω un ouvert de \mathbb{R}^n . Une fonction $u \in H^1(\Omega)$ à valeurs réelles est dite harmonique si

$$\int_{\Omega} \nabla u \cdot \nabla \varphi = 0, \quad \forall \, \varphi \in H_0^1(\Omega).$$

1. Supposons que $u \in \mathcal{C}^{\infty}(\Omega)$ est harmonique et considérons deux boules concentriques $B(r) \subset\subset B(R) \subset\subset \Omega$ de rayons respectivement r>0 et R>0 (on a noté $\subset\subset$ la stricte inclusion). Montrer que pour tout $c\in\mathbb{R}$, on a :

$$\int_{B(r)} |\nabla u|^2 \, dx \le \frac{16}{(R-r)^2} \int_{B(R) \setminus B(r)} |u - c|^2 \, dx.$$

[Indication : introduire $\eta \in \mathcal{C}^{\infty}_{c}(\Omega)$ telle que $0 \leq \eta \leq 1$, $\eta = 1$ sur B(r), $\eta = 0$ sur $\Omega/B(R)$ et $|\nabla \eta| \leq 2/(R-r)$ et choisir $\varphi = (u-c)\eta^2$ comme fonction test.]

2. Considérons une boule $B(R) \subset\subset \Omega$. Montrer que pour tout $k \in \mathbb{N}^*$, il existe une constante K(R,k) telle que pour toute $u \in \mathcal{C}^{\infty}(\Omega)$ vérifiant $\Delta u = 0$, on a :

$$||u||_{H^k(B(R/2))}^2 \le K(R,k) \int_{B(R)} u^2 dx.$$

3. Montrer que si $u \in H^1(\Omega)$ est harmonique, alors $u \in \mathcal{C}^{\infty}(\Omega)$. [Indication: introduire une approximation de l'unité.]

Exercice 4 : inégalité de Caccioppoli généralisée

Soit Ω un ouvert de \mathbb{R}^n . Soit $A = (a_{ij}(x)) \in L^{\infty}(\Omega, \mathcal{M}_d(\mathbb{R}))$ une fonction à valeurs matricielles et $\alpha > 0$ tels que :

$$\forall x \in \Omega, \forall \xi \in \mathbb{R}^d, \qquad \alpha |\xi|^2 \le \sum_{i,j=1}^d a_{ij}(x)\xi_i\xi_j.$$

Soient $b\in L^\infty(\Omega,\mathbb{R}^d)$ et $c\in L^\infty(\Omega,\mathbb{R})$. On considère l'opérateur linéaire défini par :

$$Lu = -\operatorname{div}(A(x)\nabla u) + b(x) \cdot \nabla u + c(x)u$$
$$= -\sum_{i,j=1}^{d} \partial_{x_i}(a_{ij}(x)\partial_{x_j}u) + \sum_{i=1}^{d} b_i(x)\partial_{x_i}u + c(x)u.$$

Soient $f \in L^2(\Omega)$ et $u \in H^1(\Omega)$ telles que Lu = f au sens des distributions. Soit $\Omega' \subset \Omega$ un ouvert borné tel que $\overline{\Omega'} \subset \Omega$. Montrer que :

$$\int_{\Omega'} |\nabla u|^2 dx \le C \int_{\Omega} (u^2 + f^2) dx.$$

[Indication : on pourra utiliser comme fonction test $\eta^2 u$ où $\eta \in \mathcal{C}_c^{\infty}(\Omega)$ et vaut 1 sur Ω' .]

Exercice 5 : estimation des dérivées d'une fonction harmonique

Soit Ω un ouvert de \mathbb{R}^n . Soit $u \in \mathcal{C}^2(\Omega)$ une fonction harmonique dans Ω .

1. Montrer que si $\overline{B}(x_0,r)\subset\Omega$, alors, pour tout j=1,...,n:

$$\frac{\partial u}{\partial x_j}(x_0) = \frac{1}{|B(x_0, r)|} \int_{\partial B(x_0, r)} u(y) \nu_j(y) dy$$

où ν_i est la j-ième coordonnée du vecteur normal unitaire à $\partial B(x_0, r)$.

2. On suppose que $m \le u \le M$ sur $\partial B(x_0, r)$ pour deux constantes m et M. Montrer que :

$$\left| \frac{\partial u}{\partial x_i}(x_0) \right| \le C_n \frac{M-m}{r}$$

où C_n est une constante qui dépend uniquement de la dimension n.

3. En déduire que si $m \le u \le M$ sur Ω , alors :

$$\forall x \in \Omega, \qquad \|\nabla u(x)\| \le C'_n \frac{M-m}{d(x,\partial\Omega)}$$

où $\|\cdot\|$ désigne la norme euclidienne usuelle.

Exercice 6 : conséquences de la propriété de la moyenne pour les fonctions harmoniques

1. Soit Ω un ouvert de \mathbb{R}^n et soit $f \in \mathcal{C}^2(\Omega)$ harmonique dans Ω . Soit $x_0 \in \Omega$, on note $\rho(x_0) = \operatorname{dist}(x_0, \partial\Omega) > 0$. Montrer que pour tout $r \in]0, \rho(x_0)[$ et toute fonction radiale $y \mapsto \psi(|y|) \in L^1(B(0, r))$, on a l'égalité suivante :

$$f(x_0) \int_{B(0,r)} \psi(|y|) \, dy = \int_{B(0,r)} f(x_0 + y) \psi(|y|) \, dy.$$

2. Montrer que toute fonction harmonique sur \mathbb{R}^n tendant vers 0 à l'infini est identiquement nulle sur \mathbb{R}^n .

Exercice 7 : régularité d'une distribution harmonique

Soit Ω un ouvert de \mathbb{R}^n . Soit $T \in \mathcal{D}'(\Omega)$. On dira que T est une distribution harmonique sur Ω si $\Delta T = 0$ dans $\mathcal{D}'(\Omega)$. Le but de l'exercice est de montrer que si T est une distribution harmonique sur Ω , T est en fait une fonction de classe \mathcal{C}^{∞} sur Ω .

1. a) Soient $x_0 \in \Omega$ et r > 0 tels que $B(x_0, 2r) \subset \Omega$. On introduit $\phi \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ qui satisfait

$$0 \le \phi \le 1$$
, supp $(\phi) \subset B(x_0, 3r/2)$, $\phi(x) = 1$ pour $|x - x_0| \le r$.

Montrer que ϕT est une distribution harmonique sur $B(x_0, r)$. On notera encore ϕT le prolongement de $\phi T \in \mathcal{E}'(\Omega)$ par 0 en dehors de Ω .

b) Soit $(\theta_{\varepsilon})_{\varepsilon>0}$ une suite régularisante positive de $\mathcal{C}_c^{\infty}(\mathbb{R}^n)$ satisfaisant

$$\operatorname{supp}(\theta_{\varepsilon}) \subset B(0, \varepsilon), \quad \int_{\mathbb{R}^n} \theta_{\varepsilon}(x) \, dx = 1.$$

Montrer que $\theta_{\varepsilon} * (\phi T) \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ est harmonique dans $B(x_0, r - \varepsilon)$.

c) On suppopse maintenant que $0 < \varepsilon < r/4$. On considère la fonction radiale $\Psi(x) = \psi(|x|^2)$ à support dans B(0, r/4) avec $\psi \in \mathcal{C}^{\infty}(\mathbb{R}^+)$ et $\int_{\mathbb{R}^n} \psi(|z|^2) dz = 1$. Montrer que pour tout $x \in B(x_0, r/2)$,

$$\theta_{\varepsilon} * (\phi T)(x) = \Psi * (\theta_{\varepsilon} * (\phi T))(x).$$

- d) Montrer que $\Psi * (\theta_{\varepsilon} * (\phi T))$ converge uniformément sur tout compact de \mathbb{R}^n vers $\Psi * (\phi T)$ lorsque $\varepsilon \to 0$.
- e) Montrer que T est une fonction de classe \mathcal{C}^{∞} sur $B(x_0, r/2)$ puis conclure.
- 2. Montrer que toute distribution tempérée T harmonique sur \mathbb{R}^n (c'est-à-dire que $T \in \mathcal{S}'(\mathbb{R}^n)$ vérifie $\Delta T = 0$ dans $\mathcal{S}'(\mathbb{R}^n)$) est une fonction polynomiale.