TD N°6 : ÉQUATIONS DE HAMILTON-JACOBI ET ANALYSE CONVEXE

Dans tout le TD, n désigne un entier naturel non nul.

Exercice 1 : régularité des solutions de viscosité

On considère $H:(t,x,p)\in\mathbb{R}^+\times\mathbb{R}^n\times\mathbb{R}^n\mapsto H(t,x,p)\in\mathbb{R}$ qui est uniformément continu sur $\mathbb{R}^+\times\mathbb{R}^n\times\mathbb{R}^n$. On suppose de plus qu'il existe $L_1>0$ et $L_2>0$ tels que

$$|H(t, x, p) - H(t, y, p)| \le L_1 |x - y| |p| + L_2 |x - y|, \quad \forall t \in \mathbb{R}^+_*, \ \forall x, y \in \mathbb{R}^n, \ \forall p \in \mathbb{R}^n.$$

On considère ensuite l'équation de Hamilton-Jacobi d'ordre 1 suivante :

(1)
$$\begin{cases} \partial_t u(t,x) + H(t,x,\nabla_x u(t,x)) = 0 & \text{sur } \mathbb{R}_*^+ \times \mathbb{R}^n \\ u(0,x) = u_0(x) & \text{sur } \mathbb{R}^n. \end{cases}$$

On suppose que u_0 est dérivable, bornée et de dérivée bornée sur \mathbb{R}^n . Soit T > 0 fixé. On admet qu'on peut montrer l'existence d'une solution de viscosité à (1) qui est bornée et uniformément continue sur $[0,T] \times \mathbb{R}^n$, on la note u.

1. Soit $\delta > 0$. Pour $t \geq 0$, on définit

$$C_{\delta}(t) = e^{L_1 t} \|\nabla u_0\|_{\infty} + \frac{L_2 + \delta}{L_1} \left(e^{L_1 t} - 1 \right)$$

puis pour $\beta > 0$ et $\sigma > 0$, on pose

$$M = \sup_{\substack{x,y \in \mathbb{R}^n \\ t \in [0,T]}} \left(u(t,x) - u(t,y) - C_{\delta}(t)|x - y| - \beta(|x|^2 + |y|^2) - \frac{\sigma}{T - t} \right).$$

En dédoublant les variables en temps, montrer que pour σ , δ et β bien choisis, on a $M \leq 0$.

2. Montrer que pour tout $t \in [0,T]$, $u(t,\cdot)$ est lipschitzienne et qu'on a l'estimation suivante :

$$\|\nabla_x u(t,\cdot)\|_{\infty} \le e^{L_1 t} \|\nabla u_0\|_{\infty} + \frac{L_2}{L_1} \left(e^{L_1 t} - 1\right), \quad \forall t \in [0,T].$$

Exercice 2 : formule de Lax-Oleinik

Soit $u_0: \mathbb{R} \to \mathbb{R}$ lipschitzienne. On considère l'équation de Hamilton-Jacobi suivante :

$$\partial_t u + \frac{1}{2} |\partial_x u|^2 = 0 \quad \text{sur} \quad \mathbb{R}_*^+ \times \mathbb{R}.$$

En utilisant la formule de Lax-Oleinik, calculer les solutions associées aux données initiales u_0 définies par :

1.
$$u_0(x) = |x|$$
,

2.
$$u_0(x) = -|x|$$

3.
$$u_0(x) = \begin{cases} -|x| & \text{si } |x| \ge 1\\ -\frac{1}{2}(x^2+1) & \text{si } |x| \le 1. \end{cases}$$

Exercice 3 : suites de solutions de viscosité

Soit Ω un ouvert de \mathbb{R}^n .

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de $\mathcal{C}(\Omega)$ telle que pour tout $n\in\mathbb{N}$, u_n est une solution de viscosité de

$$F_n(x, u_n(x), \nabla u_n(x)) = 0 \quad \text{sur } \Omega$$

où pour tout $n \in \mathbb{N}$, $F_n : \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$. On suppose que $u_n \to u$ localement uniformément sur Ω et que $F_n \to F$ localement uniformément sur $\Omega \times \mathbb{R} \times \mathbb{R}^n$. Montrer que u est une solution de viscosité de

$$F(x, u(x), \nabla u(x)) = 0$$
 sur Ω .

2. On définit

$$u_1(x) = 1 - x, \quad \forall x \in]0,1[$$

et pour tout $n \geq 2$,

$$u_n(x) = \begin{cases} x - \frac{2j}{2^n} & x \in](2j)/(2^n), (2j+1)/2^n [\\ \frac{2j+2}{2^n} - x & x \in [(2j+1)/2^n, (2j+2)/2^n] \end{cases} \quad j = 0, 1, \dots, 2^{n-1} - 1.$$

Montrer que pour tout $n \ge 1$, u_n est solution presque partout de l'équation |u'(x)| - 1 = 0 sur]0,1[mais que sa limite uniforme ne l'est pas. Remarquer également que pour $n \ge 2$, u_n n'est pas solution de viscosité de |u'(x)| - 1 = 0 sur]0,1[.

Exercice 4 : solutions au sens presque partout et solutions de viscosité

1. Soit $u:\mathbb{R}^n\to\mathbb{R}$ une fonction sci. On définit l'ensemble $D^-u(x)$ pour $x\in\mathbb{R}^n$ par

$$D^{-}u(x) = \left\{ p \in \mathbb{R}^{n} : \underline{\lim}_{y \to x} \frac{u(y) - u(x) - p \cdot (y - x)}{|y - x|} \ge 0 \right\}.$$

a) Montrer que

$$D^-u(x) = \left\{ p \in \mathbb{R}^n : u(y) - u(x) \ge p \cdot (y - x) + o(|y - x|) \text{ pour } y \text{ dans un voisinage de } x \right\}.$$

b) Montrer que si de plus u est convexe, on a $D^-u(x)=\partial u(x)$ où

$$\partial u(x) = \{ p \in \mathbb{R}^n : u(z) - u(x) - p \cdot (z - x) \ge 0 \text{ pour tout } z \in \mathbb{R}^n \}.$$

2. Soient $u:\mathbb{R}^n\to\mathbb{R}$ continue et $x\in\mathbb{R}^n$. On considère $D^-u(x)$ défini précédemment et on définit

$$D^{+}u(x) = \left\{ p \in \mathbb{R}^{n} : \overline{\lim}_{y \to x} \frac{u(y) - u(x) - p \cdot (y - x)}{|y - x|} \le 0 \right\}.$$

a) Montrer que si $D^+u(x)$ et $D^-u(x)$ sont non vides alors u est différentiable en x et

$$D^+u(x) = D^-u(x) = {\nabla u(x)}.$$

b) Montrer que si u est différentiable en x alors

$$D^+u(x) = D^-u(x) = {\nabla u(x)}.$$

3. Soit $F: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ continue. Montrer que si u est localement lipschtzienne et solution de viscosité de

$$F(x, u(x), \nabla u(x)) = 0$$
 sur \mathbb{R}^n ,

alors u est solution au sens presque partout de cette équation, c'est-à-dire satisfait

$$F(x, u(x), \nabla u(x)) = 0$$
 p.p. sur \mathbb{R}^n .

4. Soient $u: \mathbb{R}^n \to \mathbb{R}$ semi-concave et $x \in \mathbb{R}^n$. On définit

$$D^*u(x) = \left\{ p \in \mathbb{R}^n : p = \lim_{n \to +\infty} \nabla u(x_n), \ x_n \xrightarrow[n \to \infty]{} x \right\}.$$

- a) Montrer que $D^*u(x) \neq \emptyset$.
- b) Montrer que pour tout $p \in D^*u(x)$ et pour tout $h \in \mathbb{R}^n$ dans un voisinage de 0, on a :

$$u(x+h) - u(x) - p \cdot h \le C|h|^2$$

pour une constante $C \geq 0$.

- c) En déduire que $D^-u(x) = \emptyset$ ou u est différentiable en x.
- 5. Soit $F: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ continue. Soit $u: \mathbb{R}^n \to \mathbb{R}$ semi-concave telle que

$$F(x, u(x), \nabla u(x)) \ge 0$$
 p.p. sur \mathbb{R}^n .

Montrer que u est une sur-solution de viscosité de

$$F(x, u(x), \nabla u(x)) = 0$$
 sur \mathbb{R}^n .

Exercice 5 : continuité des fonctions convexes

Soit $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe.

- 1. Soit $x \in \mathbb{R}^n$. Montrer que si f est majorée au voisinage de x, alors f est continue en x.
- 2. a) Soit $A \subset \mathbb{R}^n$. Montrer que

$$\sup_{A} f = \sup_{\text{conv}(A)} f.$$

b) Soit $\bar{B}_1(x,r)$ la boule fermée de centre $x \in \mathbb{R}^n$ et de rayon r > 0 pour la norme 1 sur \mathbb{R}^n . Montrer que $\bar{B}_1(x,r)$ est l'enveloppe convexe de

$$B = \{x + re_1, x - re_1, \dots, x + re_n, x - re_n\}$$

où on a noté e_i , $i=1,\ldots,n$ les vecteurs de la base canonique de \mathbb{R}^n .

3. Montrer que f est continue dans l'intérieur de l'ensemble $\{x \in \mathbb{R}^n : f(x) < +\infty\}$.

Exercice 6: Hamiltonien convexe

Soit Ω un ouvert de \mathbb{R}^n .

1. Soient $H:\mathbb{R}^n\to\mathbb{R}$ convexe sur \mathbb{R}^n et u une fonction localement lipschitzienne sur Ω telle que

$$u(x) + H(\nabla u(x)) < 0$$
 p.p. sur Ω .

Montrer que u est une sous-solution de viscosité de

$$u(x) + H(\nabla u(x)) = 0$$
 sur Ω .

2. Reprendre la première question dans le cas où $H: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ est continu par rapport à ses deux variables et convexe par rapport à sa deuxième variable et pour l'équation

$$u(x) + H(x, \nabla u(x)) = 0$$
 sur Ω .